Translate

Tuesday, September 15, 2020

Amazon Personalize now available in EU (Frankfurt) Region

Amazon Personalize is a machine learning (ML) service that enables you to personalize your website, app, ads, emails, and more with private, custom ML models that you can create with no prior ML experience. We’re excited to announce the general availability of Amazon Personalize in the EU (Frankfurt) Region. You can use Amazon Personalize to create higher-quality recommendations that respond to the specific needs, preferences, and changing behavior of your users, improving engagement and conversion. For more information, see Amazon Personalize Is Now Generally Available.

To use Amazon Personalize, you need to provide the service user interaction(events) data (such as page views, sign-ups, purchases etc.) from your applications, along with optional user demographic information (such as age, location) and a catalog of the items you want to recommend (such as articles, products, videos, or music). This data can be provided via Amazon S3 or be sent as a stream of user events via a JavaScript tracker or a server-side integration (learn more). Amazon Personalize then automatically processes and examines the data, identifies what is meaningful, and trains and optimizes a personalization model that is customized for your data. You can then easily invoke Amazon Personalize APIs from your business application and fetch personalized recommendations for your users.

Learn how our customers are using Amazon Personalize to improve product and content recommendations and for targeted marketing communications.

For more information about all the Regions Amazon Personalize is available in, see the AWS Region Table. Get started with Amazon Personalize by visiting the Amazon Personalize console and Developer Guide.

 


About the Author

Vaibhav Sethi is the Product Manager for Amazon Personalize. He focuses on delivering products that make it easier to build machine learning solutions. In his spare time, he enjoys hiking and reading.



from AWS Machine Learning Blog https://ift.tt/32DIERj
via A.I .Kung Fu

No comments:

Post a Comment